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We discuss some aspects of the problem of the equivalence of dilute 
antiferromagnets and random field Ising models. We first investigate for dilute 
antiferromagnets the validity of the arguments of lmry and Ma. It turns out that 
they are applicable, but some care is required concerning the role played by the 
so-called internal Peierls contours. Next we consider a hierarchical version of a 
dilute antiferromagnetic lsing model in the presence of a uniform magnetic field 
and show that a renormalization group transformation maps it exactly into a 
hierarchical version of the random field lsing model, thus proving their equiv- 
alence as far as the critical behavior is concerned. In particular this implies that 
phase transition with spontaneous magnetization occurs only for dimension 
d>  2. Finally we show that in the absence of internal Peierls contours both 
models, in their hierarchical versions, exhibit phase transition already in 
dimension d--- 2. 
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1. INTRODUCTION 

Di lu t e  a n t i f e r r o m a g n e t s  in the  p r e sence  of  a u n i f o r m  e x t e r n a l  m a g n e t i c  field 

h a v e  b e e n  c o n j e c t u r e d  to  e x h i b i t  t he  s a m e  cr i t ica l  b e h a v i o r  as | s i n g  m o d e l s  

in t he  p r e s e n c e  of  e x t e r n a l  r a n d o m  m a g n e t i c  fields, tll T h e r e  are ,  howeve r ,  

on ly  a few r i g o r o u s  resu l t s  in  the  d i r e c t i o n  of  e s t a b l i s h i n g  the  c l a i m e d  
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equivalence. In the context of Curie-Weiss models this equivalence has 
been established by Amaro de Matos e t  al. q2~ both at the level of thermo- 
dynamics and of fluctuations which are nontrivial at the criticality. 

In the random field lsing model, the heuristics for the computation of 
the lower critical dimension is provided by a beautiful argument of Imry 
and Ma t3J concerning the typical energy balance associated with a Peierls 
contour. This argument by itself is not sufficient for a proof of a phase trans- 
ition in dimension d>~ 3, since it does not take into account the existence 
of the so-called internals Peierls contours (i.e., contours inside contours). 
A complete proof was finally provided by Bricmont and Kupiainen t4J with 
renormalization group techniques being the extra ingredient. The key ideas 
of this technical work were highlighted in ref. 5, where a hierarchical version 
of the model was discussed. This model incorporated the physics of the 
lmry-Ma argument and at the same time simplified the renormalization 
group steps necessary to control the effect of the internal contours. 

In this paper we first consider the problem of the validity of lmry-Ma 
argument as applied to dilute antiferromagnets. The conclusion is that they 
are applicable, but some care is to be exercised in the bond dilute model: 
before applying the argument, one should first remove those sites which, in 
consequence of the dilution, are completely decoupled from the rest of the 
system. Without removal of these sites, a simplified model which excludes 
internal contours shows phase transition with spontaneous magnetization 
already in dimension d =  2, with an energy balance which does not exhibit 
the Imry-Ma competition. 

Next we introduce a hierarchical version of the bond dilute model with 
the same structure of the hierarchical version of ref. 5. For this model we 
show that a one-step renormalization group transformation maps it exactly 
into the Bricmont-Kupiainen model, thus establishing their equivalence. 
In particular, the two models have lower critical dimension equal to 2, 
identical asymptotic behavior of correlation functions, and identical critical 
exponents. Finally we revisit the hierarchical random field Ising model with 
the extra exclusion of internal contours and show that in this situation the 
model has a phase transition already in dimension d = 2. This indicates that 
the two-dimensional model (for which Aizenman and Wehr ~6~ proved 
absence of spontaneous magnetization and where the lmry-Ma argument 
is inconclusive) is sensitive to the presence of internal contours, even in the 
hierarchical approximation, for which Bricmont and Kupiainen tS~ showed 
absence of spontaneous magnetization when they are included. 

Parts of this work appeared in ref. 7. 
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2. THE I M R Y - M A  A R G U M E N T  IN DILUTE 
A N T I F E R R O M A G N E T S  

A bond dilute antiferromagnetic Ising model in the presence of an 
external uniform magnetic field h in an finite volume A c Z d with free 
boundary conditions is given by the energy function of a configuration 
a= {a,, i~ Z'J}: 

H~AF(a)=J ~ r ~ a~ (2.1) 
( i j ) ~ a  i ~ A  

where J >  0, and the dilution is described by the independent identically 
distributed random variables 

10 with probability 1 - p (2.2) 
~0 = with probability p 

In order to introduce Peierls contours for this model we first perform 
the transformation 

ai -o ( - 1 )11i11 a i (2.3) 

where [Jill = z a = ~  ik, with the notation i=(i~ ..... id). The transformation 
(2.3) which inverts the spin variables in the odd sublattice of Z a maps the 
model (2.1) into a dilute ferromagnetic model in the presence of a staggered 
magnetic field: 

H a ( a ) = - J  ~ ~uaiaj+h ~ (-1)lt~llai (2.4) 
( i j )  ~ A iE  A 

Let us now investigate how Imry-Ma arguments could be applied to 
the model (2.4). So, consider the model with boundary condition +,  i.e., 
a i =  +1, for all i in the external boundary of A. For a given configuration 
a we draw Peierls contours by the usual prescription so that a one-to-one 
correspondence between a and a collection F of closed nonintersecting 
contours ~ is established. The energy associated with F can be written apart 
from an additive constant as 

Ha(r)=2J ~ 5-'. ~o+h Y~ (-1)"'"ai(r) (2.5) 

where ai(F)= +1 if the number of contours in F containing the site i is 
even, and ai(F) = - 1  otherwise. If a given configuration a is such that 
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there are no contours in F which are contained inside other contours, then 
the contribution of the second term in (2.5) may be explicitly computed: 

(2.6) 
" / E F \  (ij)E~' iE'/ / 

If we now take (2.6) as the energy function of a model whose dynamical 
variables are collections of contours F =  {~i} where the ~,,. are closed 
contours which are not inside each other, i.e., no internal contours, it is 
possible to provide a Peierls argument to prove spontaneous magnetization 
for d>_-2. In fact, the typical contribution to the energy coming from a 
given contour ~, is bigger than or equal to 

I-2J(1 - p) - hi [)'1 (2.7) 

where by I1'1 we mean the length (or area in d =  3) of the contour ),. To 
make this heuristic argument rigorous we use the usual Peierls argument 
technique to get the immediate bound for the probability that tr o is 
negative: 

P{ao = --1 } ~< ~ # (s)(exp{ - 2Jfl~ })" exp{hs } 
s = O  

(2.8) 

where # ( s )  denotes the number of contours containing the origin with 
"surface" s, and where we used the independence of the random variables ~ij. 
The bar means average with respect to the dilution. With the usual bound 
#(s)<~sa/"l- l l (2d)  ' and from e x p { - 2 J f l ~ } = p + ( l - p ) e x p ( - 2 J f l )  it 
follows that we have spontaneous magnetization provided p, h are suf- 
ficiently small and fl is sufficiently large if the dimension d~> 2. This shows 
that in the absence of internal contours there are no strong fluctuations of 
the type described in the arguments of Imry and Ma. 

The above result is misleading, however, for the properties of the full 
model as we now discuss. The imposition of absence of internal contours 
should be imposed only after removing from the system sites which are 
statistically independent. This is done as follows. We first remark that if in 
a given realization of the dilution 4 =  {r a given site i E Z  d is such that 
~ = 0 for all nearest neighbor sites j, then the site i is completely decoupled 
from the rest of the system and it contributes trivially to the free energy 
and correlation functions. It is then convenient to eliminate the dynamical 
variable at and view the full model as a spin system in z d \ { i } ,  i.e., the 
system has a hole at the site i. The probability of a hole at any site is 
q = p2a, but two nearest neighbor sites are not statistically independent as 
far as the probability of being holes is concerned. But if the dilu.tion p is 
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sufficiently small, holes will typically be far apart  from each other and 
it will be a good approximation to consider a new model with energy 
function given by 

H ~ ( c r ) = - J  ~ ~oaia/+h ~ (-1)lliliqia~ (2.9) 
( ( j ) e A  l E A  

where q =  {~/~} are independent identically distributed random variables 
with 

1 with probability q 
r/~ = (2.10) 

0 with probability ( ! - q) 

This new model is clearly similar to the site dilute model: 

H ~ ( a ) = - J  ~, ~,~jai~i+h ~ (--l)"ill~ia i (2.11) 
< i ( i )  e A iE  A 

where 
10 with probability 1 - p (2.12) 

~ = with probability p 

Let us consider, for the site dilute model, a contour  "), with no internal 
contours. In this model the contribution to energy from y is 

(~]) e ~, i~,,. 

The mean value of the random variable ~('~,) is 

(2.13) 

e('~,) = 2J(l  - p)-' lY] - h(1 - p) ~ ( - 1 ),i, (2.14) 
iE'/ 

and so e(y) is of the order of [Yl- Its variance is approximately given by 

{[e(y)-e(V)]2}m=2Jlyit/2(1-p)2p(2-p)+h[v(y)]'/2p(1-p) (2.15) 

where v(y) is the volume (area in d = 2 )  of the region enclosed by V. So for 
large contours  the variance is dominated by the term proport ional  to 
[v(y)]~/2~_h[),[ d/2~a ~), which will compete with a term proport ional  to 
2JTy[ coming from the average. This is the Imry -Ma  energy balance for the 
model with site dilution (2.11 ). Therefore the heuristics for the phase trans- 
ition mechanism in this model is the same as for the random field Ising 
model and it should be possible to provide a rigorous proof of this fact 
with the same methods used in ref. 4. F rom the above discussion it follows 
that the same arguments apply also to the model with bond dilution. 
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3. THE HIERARCHICAL MODEL 

Hierarchical models are ta i lor-made for the applicat ion of renormal-  
ization group techniques. (s'9) The version of the hierarchical model for 
the bond dilute system we shall use is the one introduced in ref. 5 for the 
random field Ising model. 

If L is an even positive integer we consider for each n - -  0, 1, 2 .... the 
sublattices 

( L " Z ) a =  {L"x, x e Z  d} 

with lattice spacing L". A configuration F of the system is given by 

F =  {y,,(x), x ~  (L"Z)  a, n = 0 ,  1, 2,... } (3.1) 

where y , (x )E  {0, 1 }. When y , , (x)= 1, it indicates the presence of a contour  
with the shape of a square with side L" along the coordinate  axis, centered 
at the site x + [ (L" - 1 )/2] e, where x ~ (L"Z)  a and e = ( 1, 1 ..... 1 ) ~ Z a. The 
alternative choice of  an odd L, al though leading to the same qualitative 
results, is less convenient, as will be shown later. 

If we enclose the system in a finite box A c Z a of side L N with center 
at the point [ (L  N -  1 )/23e, the energy of a configuration F is given by 

N 

H u ( F ) = 2 J  ~. L "'a-~' ~ ~ , , ( x )7 , ( x )+  ~ h,.~.,.(F) (3.2) 
n = 0 .~:E A n  .~,'E A 

where A,, = A n ( L "Z ) a, Ao - A, and 

a, .(F) = ( - 1 )p,(r) (3.3) 

where px(F)  is the number  of contours  in F enclosing the site x EA. 
The external field h ,  = ( - l ) " " " h  is staggered since we are working with the 
ferromagnetic model. This definition for cr,(F) amounts  to choosing the 
spins at the boundary  of A to be + 1. Finally, the random variables {~,,(x), 
x ~  (L"Z)  a, n = 0, I, 2,... } describe the dilution; they are independent and 

{ ;  with probabil i ty 1 - p,, 
~,,(x) = with probabil i ty p,, 

For  simplicity we shall restrict our  discussion to the case where p,, = O, for 
n >~ l, i.e., only the contours  of  the first hierarchy n = 0 are diluted. Using 
the decomposi t ion 

w U (3.4) 
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where F,, = {),,,(x), x e  (L"Z)d}, we get from (3.2) 

N 1 

HN(F)=2J ~ L "~a-'' ~ y,,(x)+V(r) (3.5) 
n =  t . ' t E A  n 

where 

with 

V ( F ) =  ~ {2JLCa-'~o(X)yo(x)+h.,ax(F)}= ~ vx 
. Y E A  x E A I  

(3.6) 

Here 

v,.= ~ {2JL~a-'~o(Y)~o(y)+h,.a.,.(F) } (3.7) 
.t" E B!~ I ) 

B!~= Lx+ ~ n,eg, n~=O ..... ( L - 1 ) f o r i = l  ..... d (3.8) 
i = I  

where e~, i =  1 ..... d, are the unit lattice vectors. That  is, B!,) ~ is the block 
indexed by x. We are now in a position to apply the renormalization group 
transformation. We compute the partit ion function 

ZN = ~ exp{ -~Hu(r)} (3.9) 
r 

in two steps, by first summing over Fo with F ' = ( F ~  ..... Fu)  fixed. We 
define V'(F') through 

exp[  - V'(F' )] - ~ exp[  - /~  V(F)] (3.10) 
F0 

The hierarchical structure of the models allows it to be explicitly computed: 

V ' ( F ' ) =  ~ {hl,.a,.(F')+C,.} (3.11) 
.~-'G A I 

where the function h'~ is given by 

e2"•= 1-] \e-~,,,+e-O~,e+oh,j (3.12) 
y E B!~ 

and Cx is an irrelevant random (since it depends on ~,., ),~ B!~ tl) constant, 
as it does not depend on F' .  Here we used the identity 

a.,.(F) = a , . ( F ' ) ( -  1) ~'" (3.13) 
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Further manipulation of (3.12) leads to 

2h ; = E ~,.ln{ e ' " "+e-ee - t~" ' ' ]  
.,.~n~, , ' ~ e - r  

where 

= gt~(h) ~. ( -  ] )l'l ~I, 1 (3.14) 
y E Bit I I 

. [ e/~t' + e - P e - / ~ h  "X 
g,s( h ) =  In ~ e - = ~ +  e --:-Ye -~--~') (3.15) 

Formula (3.14) expresses each h',. as a sum of independent random 
variables and shows that they are independent identically distributed with 
mean and variance given by 

B 

hy,.=o 

,2 )ZLa h.,. =g~(h  
(3.16) 

Therefore we have as a net effect of the renormalization group trans- 
formation the identity 

Z N  "~" C Z R N  F 1 (3.17) 

where C=exp(Z,.~A~ C,-) and zRu v denotes the partition function of a 
hierarchical random field Ising model of the type introduced by Bricmont 
and Kupiainen 15~ with energy function given by 

N 

HRV(F)=2J y, L ''a-'' ~ ~,,,(x)+ ~ h'~a,(r) 
n ~ 0 A" (7= A n A" E A 

(3.18) 

with the random field with hi, given by (3.12). 
We are now in a position to derive the relation between correlation 

functions in the two models. Let us consider the dilute antiferromagnet, an 
observable F ( F ' )  = F(F~,  F2 ..... F~), k <<. N, which does not depend on Fo, 
the configuration of contours of the first hierarchy. For this observable it 
follows from (3.17) that, for a given realization ~ of the dilution variables, 
its Gibbs expectation value is given by 

( F )  NDAV = ( p ) ~ V  (3.19) 

where 

F(Fo, FI ..... Fk_ i )=  F(FI, F,_ ..... Fk) (3.20) 
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In the thermodynamic limit we get, for fixed F, 

(F)DAV = (p)RV (3.21) 

thus establishing the equivalence of the dilute antiferromagnet and the 
random field models in the hierarchical version. 

Our result should also display the physics of the equivalence beyond 
the hierarchical approximation: summing over contour configurations on a 
smaller scale with fixed contours in the higher scales should transform, in 
the limit of infinitely many such steps, the dilute antiferromagnet into a 
random field Ising model. 

4. THE R A N D O M  FIELD H IERARCHICAL M O D E L  W I T H O U T  
INTERNAL C O N T O U R S  

In this section we revisit the Bricmont-Kupiainen 15~ hierarchical 
random field model with the extra restriction of absence of internal Peierls 
contours. From the above analysis the same conclusions should apply to 
the dilute antiferromagnetic model also taken in its hierarchical version 
with the provisos mentioned in Section 2. The Hamiltonian is given by 

N 

H R V ( F ) = 2 j  ~, L,,a ,I ~ y,,(x)+ ~ h,.ax(F) (4.1) 
t l  = 0 )." E A n  . ' t 'E A 

where h =  {hx, x E Z  a} are independent identically distributed random 
variables with h-~= 0 and ~,.= h 2. For simplicity we shall take hx with a 
Gaussian distribution. Notice that the definition (3.3) of #,.(F) implies that 
for finite N our model corresponds to boundary conditions + 1. 

For a given realization h let Fc(h)  denote the configuration of 
contours that minimizes RF H u (F), i.e., Fa(h) is the ground state of the 
model. Let us now estimate the probability that tro(Fa(h))= -1 .  Clearly 

P{ao(Fa(h)) = - !  } ~< P{3n >/0 such that ~,,,(0)~ F~(h) } 

N 

= ~ P{~,,,(0)~ro.(h)} (4.2) 
11 = 0 

where in the right-hand side we have the probability that the configuration 
Fa(h) contains a contour enclosing the origin and the equality sign is a 
consequence of the exclusion of internal contours. Now, 

1 
~,,,(0) ~ F~(h) ~ ~,, =- 1 + • L ~l ,,/2~,, h(n) <~ 0 

J 
(4.3) 
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where 

h(n)=-L-td/21" ~ hx (4.4) 
x ~ )'~( 0 ) 

is a Gaussian random variable with zero mean and variance h, so that, 
with the use of s tandard bounds for Gaussian distributions (see, for 
instance, ref. 10), we get 

where a = J/h, and 

P { ~,,,(0) e ra(h)  } <~ f ( a L  'a/2 - 1~,,) (4.5) 

1 e_~.,/2 (4.6) 
f (a )  - a(2~) u 2 

If d >  2, (4.5)implies  the bound 

P{ao(Fa(h ) )  = - 1  } ~< ~ f ( a L  'a/2- '~")=g(a) (4.7) 
n = 0  

which is uniform in N. Since g(a) ~ 0 as a ~ ~ ,  from (4.7) we see that 

ao(fa(h)) > 0 (4.8) 

is a is sufficiently large. 
For  d =  2 the estimate (4.5), which is based on the implication (4.3), 

is not sufficient since it does not decay with n. There is, however,  another  
mechanism repressing the appearance  of y,,(0) in Fa(h):  it comes from the 
exclusion of internal contours  and it goes as follows. F rom (4.5) we see that  
if a >> 1, the probabil i ty of occurrence of small contours  in the ground state 
[i.e., ) ,o (x )EFc(h) ]  is small. However,  for large n we are going to show 
that with probabil i ty that converges to one as n ~ ~ ,  it is energetically 
more favorable to insert the collection of contours  yr = {yo(X), 
x e ~,,(0), x :A 0 such that h,. >t J} than to insert the contour  ~,,,(0). To  make  
these statements more  precise, let for n/> 1 

F =  ~,,,(0) u F and r = ~o"1(0) w ff 

where P denotes an arbi trary configuration of contours  such that  F (and 
therefore ~)  satisfy the condit ion of "no internal contours."  We now 
compute  the difference of energy of the two configurations: 

H ~ F ( F )  R F  - -  - H  N ( F ) = 2 J L " - 2 h o - 2 J  ~ ( , . - 2  ~ h.,.(l-~.,.) 
x ~ 7'~(0 ) x E 7'n(0 ) 

= 2JL"3,, (4.9) 
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where 

~.,. = {10 if hx>~J (4.10) 
otherwise 

and ?'.(0)=?,,(0)\{0}, so that the summation is taken over all sites 
contained in ?,,(0) except for the origin; moreover. 

ho E' ' ] d,,=1-jL,--- ;- ~. ~-;C.~+~-~h.Jl-/~.,.) (4.11) 
x ~ )%(0) 

Since 

?,,(O)e FG(h)~ d,<~ O 
we have 

P{?,,(O) E re(h)} ~< P{A,, ~< O} (4.12) 

The heuristic reason why this mechanism works is based on the computation 
of the mean value of A,,: 

E h~ l A,,=I-L" ( o + 7 ( 1 - ( o )  =l+L"qb(a) (4.13) 

where 

(b(a)= [ (~f -1)  (o] - (21),/2 !~>~. [X- l l e- x2/2 dx (4.14) 

m 

Notice that ~(a)> 0 for all a > 0. This shows that d .  is large for large n. 
Fluctuations are controlled by standard large deviation results: using 
Tchebycheff's inequality, we have for t > 0 

exp - t(A,, - A.) 
P{d,,~<0} ~< exp td--~. (4.15) 

We now compute the right hand side using the independence of the 
random fields: 

-- ( t 2 ) {  t I 1 ]} L2"-I exp--t(A.--A.)=exp ~ exp,- ;  (o+ ho(1 - (o )  

(4.16) 
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to obtain 

_ _  12 
e x p - t ( J , , - J , , ) ~ < e x p ( ~ ) { e x p ~ - c  2} (4.17) 

where we used the fact that, if we take t sufficiently large depending on ~o 
the following inequality holds 

1 
~o)] ~< exp exp t [~o+~ho(  1 _ _ (c  ~t-') (4.18) 

It follows from (4.171 that 

- _ ( , 2 )  ,2 ,2 
exp - t(A,,_- A.)  <~ exp - tA,, exp ~ exp ~- c 2 ~< exp - tJ-~. exp ~- c 2 

exp tA,, 
(4.19) 

Let us now choose t minimizing the exponent in r.h.s.i.e. 

ZI n t =--v (4.20) 
C- 

Notice that for large n this enforces t to be large, so that (4.18) holds. This 
implies, for large n 

1 
P{A,,~<0} ~< exp--~-5c 2 (T,,) 2 (4.21) 

for some constant c. Combining this bound with the Imry-Ma bound (4.5) 
we get: 

oo 

P { a o ( r ~ ( h ) )  = - l } ~< Y' P { - f , , ( 0 )  E r ~ ( h ) }  
o 

_ o~, l ( - - ) , .  
<~ ~o + Nof (a)  + f(a)  m ~" exp - 4c--- 5 (4.22) 

No 

which may be made arbitrarily small if we take a sufficiently large. Here 
No is chosen so that (4.18) holds for n>~N o. This completes the proof 
that the ground state exhibits spontaneous magnetization if d>_-2 and a is 
sufficiently large. 

Let us now consider the system at non-zero temperature. For a given 
realization of the random parameters h, the Gibbsian probability that 
a o = - I ,  is given by: 



Dilute Antiferromagnets 63 

1 N 

Pu=~--s Z y" exp { - f lH~r(y , , (0 )wr)}  (4.23) 
n = O  F'~)'n(O) 

where the summation over Y~y,,(0),  means that it is to be taken over all 
contours F, which are compatible with y,,(0). The above formula follows 
from the fact that ao (F ' )=  - 1  implies that F ' =  (y,,(0)w F) with F ~  y,,(0). 
Therefore 

where 

pN~< ~ r,, (4.24) 
t t ~ O  

{] xp{--f l2L~d- '~"Je, ,}  if e,,>~0 
r,, = otherwise 

We now compute averages over h using the identity 

(4.25) 

so that 

f? Fs P { e , , e , , < . N u } e x p ( - u ) d u  (4.27) 

where e,, = 2flJL la- x i,,. From (4.27) it follows that 

~<~ e x p ( - u ) d u +  P { ~ , e , , < ~ u } e x p ( - u ) d u  
n/2 

~<e-~"/2 + ~ P  e,,~<~ (4.28) 

which together with the standard bound for gaussian distribution leads to 

_[_~,~ ~ e _,,/2 + _~ f ~ ~ L td/2 _ I a , 

From this and (4.24) we finally get 

~-~u~< ~. ~ (4.30) 
I '1=0 

I 

r,~ = ;i P{r,,/> x} dx (4.26) 
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which proves spontaneous magnetization for d > 2 ,  if a and /3 are suf- 
ficiently large. 

For d =  2 we must incorporate the above discussed refinement for the 
ground-state to a Peierls' type of argument. We first notice that with the 
same methods leading to (4.21) we obtain for 0 < 5  < 1, n>>-No (so that 
(4.18) holds): 

1 - -  
P{d,,~< 6 } ~< e x p -  ~ c  2 (A,,-- 6) 2 (4.31) 

In an analogous way we obtain: 

NO 

PN~< ~ r,,+ ~ s,, (4.32) 
n = 0 n > NO 

where for n >/1, 

s, ,={]xp{-2/3JL"d,,}  

We now estimate the average of s,,: 

through 

if A,, >~ O 
otherwise (4.33) 

~ =  P{~,,,d,,<~u}exp(-u)du 

f6~tn 
s~<<. e x p ( - u ) d u +  P{ct,,zl. ~< u} e x p ( - u ) d u  

<~ e - 6=" + &t,, P { /I . ~ 6 } 

where 0 < 6 < 1. Using the bound (4.31 ) we get for n > No, 

1(T,,-6)2- K,, 
~,, ~< e -  6~" + 6ct. exp - ~c5c 2 

so that 

p--~ < NoOtNof(a) + ~ K,, 
n >  NO 

thus implying spontaneous magnetization for large a and/3. 

(4.34) 

(4.35) 

(4.36) 

(4.37) 
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